
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Desiccants

Compounds that absorb water to form hydrates

\qquad
\qquad
\qquad
\qquad
Used to protect variety of commercial products
Keep desiccants in containers until contents consumed
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

\qquad
\qquad
\qquad
\qquad

\qquad
\qquad

Calculations

Show all your work
Mass of a any substance (weighing by difference)
(Substance g + Container g) - Container g = Substance g
Theoretical Water loss: initial heptahydrate $\mathrm{x} \% \mathrm{H}_{2} \mathrm{O}$
Water Lost: Initial - final weight of the magnesium hydrate

Experimental \% Water: (mass $\mathbf{H}_{2} \underline{O}$ lost) $\times 100$ (mass initial heptahydrate)

Results

Tabulate the answers to your calculations

Conclusion

State \% water in $\mathrm{MgSO}_{4} \cdot \mathbf{7} \mathrm{H}_{2} \mathrm{O}$
Compare your experimental value to the theoretical
CopyrightLaryy P. Taylor. Ph.D. All Rights Recesred

Determine n

\qquad

Calculate the value of \mathbf{n} for $\mathbf{M g S O}_{4} \bullet \mathbf{n ~}_{\mathbf{H}}^{\mathbf{O}} \mathbf{O}$
\mathbf{N} is the ratio of moles water to moles anhydrous salt Experiment measures grams ... need moles for this ratio

Convert grams water lost to moles (via molar mass of one $\mathbf{H}_{2} \mathbf{O}$) Convert grams MgSO_{4} remaining to moles (via molar mass $\mathbf{M g S O}_{4}$)
\qquad
\qquad
\qquad

$$
(\mathbf{n})=\frac{\text { Moles }}{\text { Moles anhydrous magnesium heptahydrate }}
$$

\mathbf{n} is closest small, whole number
\qquad
\qquad
\qquad

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

