

Calculations Show all your work

Mass of a any substance (weighing by difference) (Substance g + Container g) – Container g = Substance g Theoretical Water loss: initial heptahydrate x % H₂O Water Lost: Initial – final weight of the magnesium hydrate

 $\begin{array}{c} Experimental ~\% ~Water: ~ \underbrace{(mass ~ H_2 \ O \ lost) ~x~100}_{(mass \ initial \ heptahydrate)} \end{array}$

Results

Tabulate the answers to your calculations

Conclusion State % water in MgSO₄ · 7 H₂O

Compare your experimental value to the theoretical

Copyright Larry P. Taylor, Ph.D. All Rights Reserved

5

Determine n 🧊
Calculate the value of n for MgSO ₄ • n H ₂ O
N is the ratio of moles water to moles anhydrous salt Experiment measures grams need moles for this ratio
Convert grams water lost to moles (via molar mass of one $\rm H_2O)$ Convert grams $\rm MgSO_4$ remaining to moles (via molar mass $\rm MgSO_4)$
(n) = <u>Moles water lost</u> Moles anhydrous magnesium heptahydrate
n is closest small, whole number

Copyright Larry P. Taylor, Ph.D. All Rights Reserved

LPT

