









| Molecule – Molecule Stoichiometry                                                                                                                   |     |  |  |  |  |
|-----------------------------------------------------------------------------------------------------------------------------------------------------|-----|--|--|--|--|
| $4 \text{ NH}_3 + 5 \text{ O}_2 \Rightarrow 4 \text{ NO} + 6 \text{ H}_2 \text{ O}$                                                                 |     |  |  |  |  |
| How many $O_2$ molecules react with 308 molecules $NH_3$ ?                                                                                          |     |  |  |  |  |
| $Given (known) = 308 molecules NH_3$<br>Wanted = # molecules O <sub>2</sub>                                                                         |     |  |  |  |  |
| 308 molecules $NH_3$ = # molecules $O_2$                                                                                                            |     |  |  |  |  |
| Need "per" expression (from balanced chemical reaction)<br>to convert molecules of ammonia to molecules oxygen                                      |     |  |  |  |  |
| <b>308 molecules NH</b> <sub>3</sub> x <b>50</b> <sub>2</sub> molecules = <b>385 O</b> <sub>2</sub> molecules<br><b>4 NH</b> <sub>3</sub> molecules |     |  |  |  |  |
| From Coefficients of BALANCED Reaction                                                                                                              |     |  |  |  |  |
| Copyright Larry P. Taylor, Ph.D. All Rights Reserved                                                                                                | LPT |  |  |  |  |







| <b>Stoichiometry: Per Expressions</b><br>$2 C_2 H_6 + 7 O_2 \rightarrow 4 CO_2 + 6 H_2 O$ |                                                     |                                                       |                          |  |
|-------------------------------------------------------------------------------------------|-----------------------------------------------------|-------------------------------------------------------|--------------------------|--|
| "per expressions" (Conversion factors)<br>based on coefficients of balanced equation      |                                                     |                                                       |                          |  |
| <u>2 moles C<sub>2</sub>H<sub>6</sub></u>                                                 | <u>2 moles C<sub>2</sub>H<sub>6</sub></u>           | <u>2 moles C<sub>2</sub>H<sub>6</sub></u>             | <b>Molar Ratio</b>       |  |
| 7 moles O <sub>2</sub>                                                                    | 6 moles H <sub>2</sub> O                            | 4 moles CO <sub>2</sub>                               | <b>Relates Any 2</b>     |  |
| <u>7 moles O<sub>2</sub></u>                                                              | $\frac{7 \text{ moles } O_2}{1 \text{ moles } O_2}$ | $\frac{7 \text{ moles } O_2}{1 \text{ moles } O_2}$   | <b>Chemical Entities</b> |  |
| 2 moles $C_2H_6$                                                                          | 4 moles $CO_2$                                      | 6 moles $H_2O$                                        |                          |  |
| $\frac{4 \text{ moles } CO_2}{2 \text{ moles } C_2H_6}$                                   | 7 moles $O_2$                                       | $\frac{4 \text{ moles } CO_2}{6 \text{ moles } H_2O}$ |                          |  |
| <u>6 moles H<sub>2</sub>O</u>                                                             | <u>6 moles H<sub>2</sub>O</u>                       | <u>6 moles H<sub>2</sub>O</u>                         |                          |  |
| 2 moles $C_2H_6$                                                                          | 7 moles $O_2$                                       | 4 moles CO <sub>2</sub>                               | 670                      |  |
|                                                                                           | Let the units                                       |                                                       |                          |  |
| Copyright Larry P. Taylor, Ph.D.                                                          | All Rights Reserved                                 |                                                       | LPT                      |  |























