Bonding

A matter of geometry atoms only contact outer regions

Octet Rule

Eight valence electrons, ns²np⁶, is especially stable Noble gases do not tend to form compounds

To reach stability of the octet:

Atoms lose or gain (transfer) electrons (for ionic compounds) Atoms share electrons (for molecular or covalent bonded compounds)

Product: both atoms with "inert configuration"

Chemical Bonds

Attractive force that holds 2 or more atoms together in a unit Energy of bonded pair less than energy of separated atoms

Basic Types

Ionic:

Transfer of electrons from one atom \rightarrow ions +/- ions attracted to one another Strong electrostatic forces hold ions within crystal matrix

Covalent:

Sharing a pair of electrons between two nuclei

Covalent and Ionic

Bond Properties

	Ionic	Covalent
Basic Component	Ions (Charged Matrix)	Atoms/Molecules
Constituents	Metal + Non-Metal	2 Non-Metals
State (RT)	Solid	Solid, Liquid, Gas
Melting Point	Very High (> 200 °C)	Lower (< 200 °C)
Odor	None	May Be Present
Flammability	No	Can Be
Conductivity	Solids: Poor Melted: Good Aqueous: Good	Solids: Poor Melted: Poor Aqueous: Poor

In general covalent molecules are not electrical conductors, but some exceptions (acids) do occur

Ionic Bonding

Ionic = separation of charge Not a single entity between individual atoms ... Strong electrostatic forces hold ions within crystal matrix

Ionic Interactions: Commonly, Metal Cation & Non-Metal Anion

Transfer of electrons from one atom to another to form ions

Both atoms have inert (filled outer shells) configuration

Cation smaller than neutral atom Anion larger than neutral atom

Ionization Energy = Amount of energy required to REMOVE electron

Atom Size

Lowest ionization energyè → largest distance from nucleus

Covalent Bonding

Nonpolar Covalent: equal sharing of e⁻

Atomic Radius Influences Bond Length (Strength)

Covalent Bonding in Methane (CH4)

Carbon & Hydrogen ~ Same Electronegativity Equal Electron Sharing → Non-Polar Covalent Bond

Oxygen More Electronegative than Hydrogen Unequal Electron Sharing \rightarrow Polar Covalent Bond

Dipole

Result of non-uniform distribution of electrons (charges):

Arrow → drawn with arrowhead at most negative Direction reflects relative direction of charge separation (Result of orbital geometry)

Electronegativity

Measure of ability to acquire electrons strength by which atoms attract bonded electron pair

High Electronegativity \rightarrow easiest to add electrons to outer shell

Measure of ability to acquire electrons

Most electronegative \rightarrow negative end of dipole

Copyright Larry P. Taylor Ph.D. All Rights Reserved

Electronegativity Differences

 $\Delta \le 0.4 \Rightarrow$ non-polar covalent $\Delta \quad 0.4 - 1.9 \Rightarrow$ polar covalent $\Delta > 1.9 \Rightarrow$ ionic

 $\Delta = difference in electronegativity of the bonded atoms$

Use Table of Electronegativities to determine bonds type

H–F		Cl–F
	F = 4.0	F = 4.0
	<u>$H = 2.1$</u>	<u>$Cl = 3.0$</u>
	1.9 Polar-Covalent	1.0 Polar-Covalent

Na–F

ť	Ca–F
F = 4.0	F = 4.0
<u>Na = 0.9</u>	<u>$Ca = 0.7$</u>
3.1 Ionic	3.3 Ionic

Indicate which is the more polar bond Indicate the polarity of the dipole				
C-O or Si-O	H–O or H–S	H–S or H–I	H–P or H–S	
> Electronegativity difference, > polarity Most electronegative atom → negative end of dipole				
C-O or Si-O C = 2.5 O = 3.5 Si = 1.8	H-O or H-S H = 2.1 O = 3.5 S = 2.5	H-S or H-I H = 2.1 S = 2.5 I = 2.5	H-P or H-S H = 2.1 P = 2.1 S = 2.5	
$\Delta \text{ CO} = 1.0$ $\Delta \text{ SiO} = 1.7$	Δ HO = 1.4 Δ HS = 0.4	$\Delta HS = 0.4$ $\Delta HI = 0.4$	$\Delta HP = 0.0$ $\Delta HS = 0.4$	
SiO more polar O is negative	OH more polar O & S negative	Same polarity S & I negative	HS more polar S is negative	
			<u> </u>	

Inter-molecular Forces

Interactions Between Molecules

Ion-dipole

Chloroform (CHCl₃)

CH₃OH

Ion-induced dipole

Acetone (C₃H₆O) C₆H₁₄

Dipole-induced dipole

Dispersion

Force	Model	Basis of Attraction	Energy (kJ/mol)	Example
Bonding	P.3. 1			
Ionic		Cation-anion	400-4000	NaCl
Covalent	•:•	Nuclei-shared e ⁻ pair	150-1100	н—н
Metallic		Cations-delocalized electrons	75-1000	Fe

Alters physical properties - Typically increases melting/boiling point energy needed to overcome multiple interactions

example: bp of CH₃F >> CH₄

Hydrogen Bonds

A strong dipole-dipole interaction

Low Energy (weak) Individually weak, But, significant in quantity

Pairs H & Electronegative Atom (especially N & O; F)

> Very important In biological systems

Hydrogen Bonds-Water VI Boiling Point (^{O}C) H₂O = 100 H₂S = -60.7 H₂Se = -42 H₂Te = -2 H₂Po = 37

Energy needed to overcome H-bonded network is considerable

Water & Dry Ice

Water Ice H-Bonded Network Melts 0 °C

"Dry Ice" (CO₂) No-Bonding Network Sublimes (-78 °C)

London Dispersion Forces (Van der Waals's)

London Dispersion Forces in Fats

Weakest interaction (inversely proportional to r⁶ between atoms) **Temporary; when adjacent atom electrons create dipole** All atoms; more prevalent in heavier/larger Stronger when atoms easily polarized At 3 Angstrom, ~ 1 kcal/mole

Van der Waal Radii Volume of space where significant

Biologically (especially in lipids) significant

"Saturated" Fats are mostly linear molecules

Site of Unsaturation (a double bond) Puts a "kink" in the otherwise, linear chain

"Unsaturated" Fats are bent molecules

Saturated fats - linear molecules bundle together This takes a lot of energy to undo (melt) \rightarrow solids

Unsaturated fats – "kinks" prevent bundling → liquids

Van der Waal Radii Approximates Molecular Influence

Physical Properties & Intermolecular Forces

Control Physical properties (State of Matter) Melting & Boiling points Result of progressive elimination of intermolecular forces > intermolecular forces, > energy required to melt/boil

If only dispersion forces present (no H-bonding), the more mass present (higher Z), > boiling point

Boiling Point – Some H containing Compounds

If H-bonding present, H bonded higher & & Well off the curve

Intermolecular Forces Control Physical properties (State of Matter)

Melting & Boiling points

Result of progressive elimination of intermolecular forces

> intermolecular forces, > energy required to melt/boil

Solubility and Intermolecular Forces

"like Dissolves Like" Polar solutes dissolve in water (polar solvents) Non-polar solutes dissolve in non-polar solvents

Solvent	Chemical Formula	Boiling point	Dielectric constant	Density	
Non-Polar Solvents					
Hexane	СН ₃ -СН ₂ -СН ₂ -СН ₂ -СН ₂ -СН ₃	69 °C	2.0	0.655 g/ml	
Benzene	Benzene C ₆ H ₆		2.3	0.879 g/ml	
Toluene	с ₆ н ₅ .сн _з	111 °C	2.4	0.867 g/ml	
Diethyl ether	сн _з сн ₂ .о.сн ₂ .сн ₃	35 °C	4.3	0.713 g/ml	
Chloroform	снсіз	61 °C	4.8	1.498 g/ml	
Ethyl acetate	СН ₃ -С(=0)-О-СН ₂ -СН ₃	77 °C	6.0	0.894 g/ml	
	Polar Aprotic S	šolvents			
1,4-Dioxane	<u>/-СН₂-СН₂-О-СН₂-СН₂-О-\</u>	101 °C	2.3	1.033 g/ml	
Tetrahydrofuran (THF)	<u>/.сн₂.сн₂.о.сн₂.сн₂.ү</u>	66 °C	7.5	0.886 g/ml	
Dichloromethane (DCM)	CH ₂ CI ₂	40 °C	9.1	1.326 g/ml	
Acetone	CH3·C(=0)·CH3	56 °C	21	0.786 g/ml	
Acetonitrile (MeCN)	CH ₃ -C≡N	82 °C	37	0.786 g/ml	
Dimethylformamide (DMF)	H-C(=O)N(CH ₃) ₂	153 °C	38	0.944 g/ml	
Dimethyl sulfoxide (DMSO)	CH ₃ ·S(=O)·CH ₃	189 °C	47	1.092 g/ml	
Polar Protic Solvents					
Acetic acid	СН ₃ -С(=О)ОН	118°C	6.2	1.049 g/ml	
n-Butanol	СН ₃ -СН ₂ -СН ₂ -СН ₂ -ОН	118 °C	18	0.810 g/ml	
Isopropanol (IPA)	сн _з -сн(-он)-сн _з	82 °C	18	0.785 g/ml	
n-Propanol	сн _з .сн ₂ .сн ₂ .он	97 °C	20	0.803 g/ml	
Ethanol CH ₃ -CH ₂ -OH		79 °C	24	0.789 g/ml	
Methanol	сн _з .он	65 °C	33	0.791 g/ml	
Formic acid H-C(=O)OH		100 °C	58	1.21 g/ml	
Water	H-O-H	100 °C	80	1.000 g/ml	

Assignment

Blackboard Unit 11 Practice Quiz

Optional Quiz on Electronegativity (Unit 11) (Covers material that will be on the Unit 11 exam, but is not covered in Practice Quiz 11)